ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Vasilij G. Kiptilyj
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 583-590
Alpha Particles in Fusion Research | doi.org/10.13182/FST90-A29250
Articles are hosted by Taylor and Francis Online.
The capabilities of new methods of fusion alpha-particle diagnostics based on nuclear reactions are discussed. Particularly, the resonant capture reactions between confined fast alpha particles and low-Z artificial impurities in the plasma is examined. In this case, the intensity of the decay gamma rays is proportional to the alpha-particle concentration at resonance energy. Another method is based on Doppler shape analysis of the 4.44-MeV gamma-ray spectra from the 9Be(α, n1γ)12C reaction. Results of an in-beam study of this diagnostic reaction are given. Some questions concerning the gamma spectrometer, a collimator, and a radiation shield are discussed. Estimates of the reaction rates and signal values in the Tokamak Fusion Test Reactor, T-14, Compact Ignition Tokamak (CIT), and International Thermonuclear Experimental Reactor (ITER) are presented. In conclusion, the use of gamma spectroscopy in the diagnostics fusion protons in deuterium-deuterium plasma is examined.