ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
SC Nuclear Summit focuses on V.C. Summer
The second annual South Carolina Nuclear Summit held last week featured utility executives and legislators from the state, as well as leaders from Brookfield Asset Management, which is being considered to restart construction on the two abandoned reactors at the V.C. Summer nuclear power plant in Fairfield County. The summit, at the University of South Carolina’s Colonial Life Arena, attracted more than 350 attendees. The event was hosted by the university’s Molinaroli College of Engineering and Computing.
S. K. Ho, Max E. Fenstermacher
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 185-196
Technical Paper | Plasma Engineering | doi.org/10.13182/FST89-A29147
Articles are hosted by Taylor and Francis Online.
It is desirable for the plasma operating points of future Engineering Test Reactor (ETR) tokamaks to be in parameter regimes that are inherently stable to thermal fluctuations; in other words, thermal equilibrium is maintained by properties of the power balance terms themselves without an active burn control system. Methodologies are presented for calculating thermally stable operating points and scenarios to achieve these conditions. Results are given for an ETR tokamak with major radius R0 = 5.8 m in both the ignition and current-drive modes. Though the results are sensitive to the form of the energy confinement scaling law used, for enhancements over L-mode confinement by factors of 1.5 to 2.0, stable operating regions in (n, T) space have been identified for ignited operation with T ≥ 20 keV and for current-drive steady-state operation with T ≈ 25 keV. Burn dynamics simulations and discussion of critical issues are also presented. The analyses are general and should be applicable to a wide variety of deuterium-tritium burning tokamaks.