ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Masahiro Kinoshita, Hiroshi Yoshida, Hidefumi Takeshita
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 462-473
Technical Paper | Tritium System | doi.org/10.13182/FST86-A24786
Articles are hosted by Taylor and Francis Online.
In the tritium breeding system for a fusion reactor, the addition of a large flow rate of hydrogen (H2) or deuterium (D2) to the helium purge gas is considered essential to avoid a large amount of tritium inventory. However, the tritium concentration in the hydrogen isotope mixture to be separated is reduced by two or three orders of magnitude by the addition. The effects of the drastic dilution of tritium by H2 or D2 on the isotope separation by cryogenic distillation are analyzed. The analysis is made under the conditions of the Japanese Fusion Engineering Reactor where the tritium production rate is 3 g/h. It is shown that the dilution requires a specific cascade in addition to the cascade in the mainstream fuel circulation system. The H2 addition is much more favorable than the D2 addition in terms of the cascade scale needed, tritium inventory within the cascade, and refrigeration capacity required. The dilution of tritium by H2 by two orders of magnitude requires a two-column cascade, and the tritium inventory and refrigeration capacity required are ∼8 g and 65 W, respectively. The dilution by three orders of magnitude requires a three-column cascade, and the values of the two parameters are ∼12 g and 630 W, respectively. In these cases, the tritium inventory and refrigeration capacity required for the cascade in the mainstream fuel circulation system are ∼70 g and 110 W, respectively. Thus, the dilution up to three orders of magnitude could pose no serious problem in the isotope separation.