ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
Howard L. Heinisch, Frederick M. Mann, Donald G. Doran
Fusion Science and Technology | Volume 8 | Number 3 | November 1985 | Pages 2704-2707
Technical Paper | First-Wall Technology | doi.org/10.13182/FST85-A24691
Articles are hosted by Taylor and Francis Online.
Activation calculations were performed f or 27 elements in the STARFIRE, Mirror Advanced Reactor Study (MARS), and GA Technologies, Inc. (GA) conceptual reactor first-wall neutron spectra. In all the spectra, seven of the elements (nitrogen, aluminum, nickel, molybdenum, copper, niobium, and lead) required restrictions on their concentration in a material in order to meet current regulations for near-surface radioactive waste disposal. For nickel, molybdenum, and niobium in the spectra of MARS and GA, however, the activation levels are two to five times lower than in STARFIRE. Multistep reactions were found to have only a small effect on the limits for these seven elements.