ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Kazuyuki Noborio, Yasushi Yamamoto, Satoshi Konishi
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1280-1284
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST05-A865
Articles are hosted by Taylor and Francis Online.
Using a 1-D particle code, we have analyzed characteristics of an Inertial Electrostatic Confinement Fusion device with external ion source which is added to enable low pressure operation. When the pressure becomes low, though neutron yield decreases, the decreasing amount is less than estimated from the decrease in background (target) gas density and it is confirmed that ions are accelerated efficiently with little energy loss through charge-exchange collision with background gas at low pressure. And when the pressure is lower than 0.05Pa, almost all injected ions reach to the cathode and it is expected that applying high geometrical transparency enhances accumulation of ion and enlarges neutron yield.