ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
F. Romanelli, A. Coletti, C. Gormezano, F. Lucci, A. Pizzuto, G. B. Righetti, The FTU Group, The ECRH Group
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 483-511
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A526
Articles are hosted by Taylor and Francis Online.
A conceptual study is presented for a substantial upgrade of the Frascati Tokamak Upgrade (FTU) up to B = 8 T, I = 6 MA, and R [approximately equal to] 1.3 m to study burning plasma (BP) issues in deuterium plasmas operating up to an equivalent DT gain close to Q = 2 in the ELMy H-mode and to Q = 5 with an internal transport barrier (ITB). The effect of alpha particles is simulated by ~1 MeV fast 3He minority heating produced by ion cyclotron resonance heating (20 MW). Thanks to the high-density values ([approximately equal to]4 × 1020 m-3), the FT3 plasmas are characterized by short electron-ion equipartition time (60 ms in the ELMy H-mode scenario) and slowing-down time (44 ms), with respect to the energy confinement time of ~340 ms, a feature characteristic of BP experiments but not always satisfied with present tokamak devices. Advanced scenarios at 5 T with fully noninductive current drive can be investigated with a steady-state current density profile achieved in <5 s. The aim of FT3 is to prepare ITER operation and to provide a test bed for the development of the ITER auxiliary system and diagnostics. Elements of the scientific program are as follows: the investigation of energetic particle collective effects, optimization of H-mode scenarios, development of improved H-mode scenarios and scenarios with ITBs, magnetohydrodynamic and transport studies in ITER-relevant conditions, and study of edge plasma dynamics. FT3 can use all the existing facilities available in Frascati and could be constructed in ~5 yr.