ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Standard Nuclear executes OTA with DOE
Reactor-agnostic TRISO fuel producer Standard Nuclear recently announced that it has executed an other transaction agreement (OTA) with the Department of Energy. As one of the five companies involved in the DOE’s Fuel Line Pilot Program, its entrance into this deal marks a milestone in the public-private effort to bring advanced fuel production on line in support of the DOE’s concurrently running Reactor Pilot Program.
H. Y. Khater, M. E. Sawan
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 581-585
International Thermonuclear Experimental Reactor (ITER) (Poster Session) | doi.org/10.13182/FST98-A11963676
Articles are hosted by Taylor and Francis Online.
A detailed three-dimensional model (3-D) has been developed for the divertor cassette in the ITER design. The layered configurations of the dome PFC and vertical targets were modeled accurately with the front tungsten layer modeled separately. 3-D neutronics calculations have been performed to determine the detailed spatial distribution of the neutron flux in the divertor cassette. A detailed activation analysis has been performed for zones representing the different critical components of the divertor cassette. The calculations have been performed for two operational scenarios. Special attention has been given to the top 1 cm tungsten layer of the divertor dome. The radioactivity generated in the tungsten layers of the divertor is mostly dominated by W during the first day after shutdown. The GlidCop copper and 316 SS-LN parts of the divertor also generated considerable levels of activity and decay heat. Nevertheless, the analysis showed that the tungsten Plasma Facing Component (PFC) is clearly the most critical part of the divertor from the decay heat generation point of view.