ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
F. Warmer, C. D. Beidler, A. Dinklage, Y. Turkin, R. Wolf
Fusion Science and Technology | Volume 68 | Number 4 | November 2015 | Pages 727-740
Technical Paper | doi.org/10.13182/FST15-131
Articles are hosted by Taylor and Francis Online.
In fusion power plant studies, a high confinement improvement with respect to empirical scaling is often assumed in the design of compact machines. In this work, the limits of such a confinement enhancement are studied for a helical-axis advanced stellarator (HELIAS).
As a first exercise, the well-established power balance approach is used to investigate the impact of confinement enhancement (in terms of the ISS04 renormalization factor) on the required size of HELIAS power plants. It is found that both a lower (0.5) and an upper limit (1.5 to 1.7) exist for which, respectively, ignition is no longer possible or further confinement enhancement irrelevant due to physics limits.
In the second part of the work, a predictive neoclassical transport model is introduced and employed to determine a self-consistent confinement time based on transport modelling. It is found that the confinement enhancement with respect to the ISS04 scaling decreases in comparison to Wendelstein 7-X as the device is scaled to reactor size, dropping from ~2.5 to a range of 1.2 to 1.3. This behavior is explained with underlying scaling relations and transport effects. The results from both models are consistent and important for future HELIAS systems studies.