ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
ANS commends Christopher Hanson for service at NRC
Washington, D.C. — The American Nuclear Society (ANS) issued the following statement:
"We commend Commissioner Christopher Hanson for his service and leadership at the U.S. Nuclear Regulatory Commissioner. He served honorably as both a commissioner and chair."
S. Sumida, M. Ichimura, T. Yokoyama, M. Hirata, R. Ikezoe, Y. Iwamoto, T. Okada, K. Takeyama, S. Jang, M. Sakamoto, Y. Nakashima, M. Yoshikawa, R. Minami, K. Oki, M. Mizuguchi, K. Ichimura
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 136-141
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-890
Articles are hosted by Taylor and Francis Online.
In the GAMMA 10 tandem mirror, divertor simulation experiments that utilize particle flux toward the west end region (called end-loss flux) have been implemented. Since a positive correlation has been reported between the end-loss flux and the central-cell density, an increase of the central-cell density is important for obtaining a higher end-loss flux on the divertor simulation experiments. By arranging the ion cyclotron range of frequency (ICRF) systems so as to excite strong ICRF waves in both anchor cells simultaneously, we have succeeded in producing high-density plasmas (line density of 1.2×1014 cm−2) in both anchor cells. As a result, a higher central-cell density of 4.4×1012 cm−3 and a higher end-loss flux of more than 1023 m−2s−1 have been obtained. One of the possible mechanisms of the high density production is a formation of positive potentials on both anchor cells. Plasmas in the central cell are confined due to those potentials.