ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
D. H. Zhu, J. L. Chen, Z. J. Zhou, R. Yan, R. Ding
Fusion Science and Technology | Volume 66 | Number 2 | October 2014 | Pages 337-342
Technical Paper | doi.org/10.13182/FST13-738
Articles are hosted by Taylor and Francis Online.
To investigate the influences of dispersed lanthanum oxide (La2O3) additive on the properties of a tungsten (W)-based plasma-facing material, ultrafine-grained W-1% La2O3 composite has been successfully fabricated using the resistance sintering under ultrahigh pressure method, which can suppress W grain growth during sintering processes. Its relative density, Vickers microhardness, microstructure, and thermal conductivity have been analyzed and compared with those of pure W. Moreover, its behaviors under fusion-related conditions, i.e., edge plasma loading in the HT-7 tokamak and transient heat flux simulated by a high-intensity pulsed ion beam, have been evaluated. It is shown that without the fine-grain strengthening effect of dispersed particles, the La2O3 additive as second-phase particles being dispersed in W-based plasma-facing material degrades the material resistance ability under plasma heat loading.