ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
Luis Chacón, George H. Miley
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 182-209
Technical Paper | doi.org/10.13182/FST98-A28
Articles are hosted by Taylor and Francis Online.
Fusion fuel of D-3He combines a high-energy yield per fusion reaction with a relatively high fusion cross section. Moreover, its nuclear reaction (D + 3He → p + , 18.3 MeV) minimizes neutrons and maximizes charged fusion products, enabling increased energy recovery efficiency by direct conversion. However, scarce 3He terrestrial resources have deterred research and development on this alternative. Production of 3He through inertial electrostatic confinement breeders, which supply 3He to field-reversed-configuration reactors (called satellites in reference to their dependence on the breeder) is explored. The breeder-satellite system is analyzed in terms of both energy balance and economics. The energy balance takes the net energy gain of the global system as the key parameter. The economic study determines the competitiveness of breeding with respect to 3He lunar mining, which was already shown to be an ultimately attractive route for commercial development.