ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Fumito Okino, Kazuyuki Noborio, Ryuta Kasada, Satoshi Konishi
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 543-548
Fusion Technologies: Heating and Fueling | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-546
Articles are hosted by Taylor and Francis Online.
Release of deuterium from falling droplets of Pb-17Li in vacuum is experimentally studied. By comparing different diameter nozzle data each other, the effect of ambiguous solution is eliminated, and reliable result is attained. The amount of deuterium that is dissolved into Pb-17Li, followed by the release from the liquid droplets in vacuum, is measured with four different diameter nozzles ranging from 0.4 mm-1.0 mm under an initial velocity of 3.0 m/s and four temperatures between 375 °C and 450 °C. The resultant mass transport, represented by quasi-dispersion-coefficient is 3.4 × 10-7 [m2/s], which is approximately two orders of magnitude faster than previous studies under static condition. It also revealed different temperature dependency. Cyclic deformation of the sphere shape is observed with a high speed movie camera. These results show the falling droplets of liquid Pb-17Li in vacuum follow the mass transfer mechanism under convection prior domain by self- excited oscillation. This result suggests that the tritium recovery method from a breeding liquid Pb-17Li blanket is viable when using multiple nozzles in vacuum for the extraction.