The European Union Integrated Tokamak Modelling Task Force (ITM-TF) has developed a standardized platform and an integrated modeling suite of codes for the simulation and prediction of a complete plasma discharge in any tokamak. The framework developed by ITM-TF allows for the development of sophisticated integrated simulations (workflows) for physics application, e.g., free-boundary equilibrium with feedback control, magnetohydrodynamic stability analysis, core/edge plasma transport, and heating and current drive. A significant effort is also under way to integrate synthetic diagnostic modules in the ITM-TF environment, namely, focusing on three-dimensional reflectometry, motional Stark effect, and neutron and neutral particle analyzer diagnostics. This paper gives an overview of the conceptual design of ITM-TF and preliminary results of the aforementioned synthetic diagnostic modules.