The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing multiphysics core-simulator software for light water reactors (LWRs) known as VERA-CS in order to improve the state of the art in modeling and simulation of challenge problems that are limiting to the nuclear industry. One of these challenge problems includes fuel rod crud deposition, which can lead to crud-induced power shift (CIPS) and crud-induced localized corrosion (CILC). This paper documents work that was performed to develop a preliminary CILC-modeling capability in VERA-CS in support of the crud challenge problem. The CILC capabilities were developed by coupling VERA-CS to the CASL-developed Cicada code, which provides 1D and 3D clad conduction and oxide growth modeling tools, as well as coupling to the CASL-developed MAMBA code, which is used for modeling clad crud deposition. An approach called rod thermal-hydraulic reconstruction (ROTHCON) was developed and integrated into VERA-CS. This allows the modeler to capture spacer-grid turbulence and heat transfer effects in the CTF subchannel code so that the spatial resolution of crud and oxide rod surface growth could be better resolved. After implementing these capabilities, several assessments were performed to ensure that the capabilities function as expected, and a pin-resolved quarter-core simulation was run as a demonstration.