ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
FPoliSolutions demonstrates RISE, an RIPB systems engineering tool
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) has held another presentation in its monthly Community of Practice (CoP) series. Former RP3C chair N. Prasad Kadambi opened the October 3 meeting with brief introductory remarks about the RP3C and the need for new approaches to nuclear design that go beyond conventional and deterministic methods. He then welcomed this month’s speakers: Mike Mankosa, a project engineer at FPoliSolutions, and Cesare Frepoli, the company’s president, who together presented “Introduction to RISE: A Digital Framework for Maintaining a Risk-Informed Safety Case for Current and Next Generation Nuclear Power Plants.”
Watch the full webinar here.
Hiroyuki Fukuyama, Hideo Higashi (Tohoku Univ), Hidemasa Yamano (JAEA)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1014-1019
An electromagnetic levitation technique performed in a static magnetic field was used to measure the density, surface tension, normal spectral emissivity, heat capacity, and thermal conductivity of molten SUS316L and SUS316L containing 5 mass% B4C. The addition of 5 mass% B4C to SUS316L yielded reductions of 111 K, 6%, 22%, and 8% in the liquidus temperature, density, normal spectral emissivity, and thermal conductivity at the liquidus temperature of SUS316L, respectively. Nevertheless, the heat capacity increased by 3% with this addition. Although the 5 mass% B4C addition had no clear effect on the surface tension, the sulfur dissolved in the SUS316L resulted in a significant decrease in the surface tension.