AREVA revisited the Dry Transfer System (DTS) [1] developed in 1996 by TransNuclear (another AREVA subsidiary) under a public-private partnership between the Electric Power Research Institute (EPRI) and the U.S Department of Energy (DOE) and examined the ability to redevelop its design in order to meet potential repackaging needs for used/spent nuclear fuel (UNF). The original purpose of the DTS was to transfer UNF from smaller bolted cask systems to larger bolted cask systems and the proposed redesigned DTS is envisioned to perform repackaging activities from multiple differently designed cask systems, including those with canisters that will require cutting and welding activities. The redesigned DTS is also to provide operational flexibility by allowing for the repackaging of UNF from several cask systems at the same time by providing lag storage and will include a means for examining UNF during repackaging. Finally, the feasibility of redesigning the DTS to be a mobile facility to allow it to be used at multiple reactor sites,especially the “stranded” sites where no spent fuel pools exist, was examined. This paper provides a summary of: the DTS design, which was evaluated by the NRC [2] and portions of which were cold-tested at Idaho National Lab [3]; the revised design criteria for an updated DTS; and conceptual layouts of the revised DTS. A revised DTS is envisioned to provide an important tool for the future management of UNF in preparation for transportation, re-storage, and/or disposal and also provides a means for repackaging UNF in case recovery from a cask/canister system is necessary (e.g., due to extended storage).