The work presented in this paper is part of investigations on the structural integrity of Spent Nuclear Fuel (SNF) casks after long-term storage and subjected to normal or accidental conditions of transport. The main challenge of this assessment is to account for the time dependent material degradation mechanisms of the cask components. A Probabilistic Risk Assessment (PRA) is used for the overall assessment of the structural integrity of the relevant package components. SNF rod cladding is likely to control structural failure due to mechanical loads, which can be accelerated by hydride related material degradation of fuel rods after long-term storage. Due to limited available experimental data, statistical methods are used to predict the fuel rod conditions between beginning of storage and moment of transport. The value of the Rod Internal Pressure (RIP) appears to be a driving force for the hydride-induced embrittlement. RIP examination data and recent simulations point towards relatively low Cladding Hoop Stresses (CHSs) in standard rods during drying procedures. An exemplary PRA of the likelihood of cladding embrittlement due to Radial Hydride Reorientation (RHR) is presented. The preliminary model indicates a relatively low probability of cladding embrittlement for standard fuel rods.