The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. Industrial-grade MgO consisting mainly of the mineral periclase is the only engineered barrier certified by U.S. EPA for emplacement in the WIPP in the U.S. An Mg(OH)2-based engineered barrier consisting mainly of the mineral brucite is to be employed in the Asse repository in Germany. The WIPP is located in a bedded salt formation, and the Asse repository is located in a domal salt formation.

Colloids would facilitate transport of contaminants including actinides. The regulator for the WIPP, U.S. Environmental Protection Agency (EPA), expressed its interest that possible formation of mineral colloids by MgO and its hydration and carbonation products under the WIPP-relevant conditions be evaluated.

In this presentation, we report a systematic experimental study to address U.S. EPA’s interest. We evaluated the possible formation of mineral colloids by using two approaches. In the first approach, as the hydration products, Mg(OH)2 (brucite), and Mg3Cl(OH)5•4H2O (phase 5), and the carbonation product, Mg5(CO3)4(OH)2•4H2O (hydromagnesite), contain magnesium, should mineral fragment colloids exist, magnesium concentrations in solution samples from MgO hydration and carbonation experiments would show a dependence on ultrafiltration, i.e., a decrease in magnesium concentrations as a function of ultrafiltration with decreasing molecular weight (MW) cut-offs. Therefore, we investigated magnesium concentrations from solutions samples in hydration and carbonation experiments as a function of ultrafiltration. We ultra-filtered solutions with a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. Our results demonstrate that the magnesium concentrations remain constant with decreasing MW cut-offs, implying the absence of mineral fragment colloids. In the second approach, because Cs+ is easily absorbed by colloids, we spiked MgO hydration and carbonation experiments under the WIPP-relevant conditions with Cs+. Then, we ultra-filtered solutions with a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. The concentrations of Cs do not change as a function of MW cut-offs, indicating the absence of colloids from MgO hydration and carbonation products. Therefore, both approaches demonstrate that the absence of mineral fragment colloids from MgO hydration and carbonation products.