ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Oak Ridge focuses neutron scattering studies on TRISO fuels
Oak Ridge National Laboratory is reporting a development in TRISO fuel research that could help evaluate high-temperature gas reactor fuels. ORNL researchers used the Spallation Neutrons and Pressure Diffractometer at the lab’s Spallation Neutron Source to make neutron scattering measurements on TRISO fuel particles containing high-assay low-enriched uranium (HALEU).
Kieran Dolan, Steven Huang, Micah Hackett, Lin-Wen Hu
Nuclear Technology | Volume 207 | Number 10 | October 2021 | Pages 1578-1598
Technical Paper | doi.org/10.1080/00295450.2020.1829428
Articles are hosted by Taylor and Francis Online.
Mitigating the release of tritium produced from neutron irradiation of molten salts containing lithium or beryllium is a technical challenge for several advanced reactor designs. In a pebble bed Fluoride-Salt-Cooled High-Temperature Reactor (FHR), tritium generated in the Li2BeF4 (Flibe) coolant is expected to interact with the large inventory of graphite in the core. The degree to which tritium is retained in the FHR core graphite is important to understand in order to predict the tritium distribution in the reactor, operational dose rates in the plant, tritium source term, and optimal strategies to mitigate environmental release. Tritium retention in graphite is simulated in this work based on a model that considers tritium diffusion from Flibe into graphite pores as well as diffusion and trapping in graphite grains. The retention model was implemented into the TRIDENT model framework to study tritium transport at the FHR system level. Tritium permeation through the FHR primary heat exchanger was the largest source of release from the primary system, followed by tritium retention and recirculation of graphite fuel pebbles.