ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Kieran Dolan, Steven Huang, Micah Hackett, Lin-Wen Hu
Nuclear Technology | Volume 207 | Number 10 | October 2021 | Pages 1578-1598
Technical Paper | doi.org/10.1080/00295450.2020.1829428
Articles are hosted by Taylor and Francis Online.
Mitigating the release of tritium produced from neutron irradiation of molten salts containing lithium or beryllium is a technical challenge for several advanced reactor designs. In a pebble bed Fluoride-Salt-Cooled High-Temperature Reactor (FHR), tritium generated in the Li2BeF4 (Flibe) coolant is expected to interact with the large inventory of graphite in the core. The degree to which tritium is retained in the FHR core graphite is important to understand in order to predict the tritium distribution in the reactor, operational dose rates in the plant, tritium source term, and optimal strategies to mitigate environmental release. Tritium retention in graphite is simulated in this work based on a model that considers tritium diffusion from Flibe into graphite pores as well as diffusion and trapping in graphite grains. The retention model was implemented into the TRIDENT model framework to study tritium transport at the FHR system level. Tritium permeation through the FHR primary heat exchanger was the largest source of release from the primary system, followed by tritium retention and recirculation of graphite fuel pebbles.