ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
E. C. Miller, J. K. Mattingly, S. D. Clarke, C. J. Solomon, B. Dennis, A. Meldrum, S. A. Pozzi
Nuclear Science and Engineering | Volume 176 | Number 2 | February 2014 | Pages 167-185
Technical Paper | doi.org/10.13182/NSE12-53
Articles are hosted by Taylor and Francis Online.
Simulations of neutron multiplicity measurements of a highly multiplicative plutonium sphere measured with a moderated array of 3He proportional counters have consistently overpredicted the mean and variance of the measured multiplicity distribution. In contrast, identical experiments using a 252Cf source have been accurately simulated. This paper outlines a sensitivity analysis of several key parameters that could account for the overprediction in the simulation of the plutonium sphere. Parameters that were analyzed include source-detector distance, detector dead time, variations in density and volume of the plutonium, and the value of for v̅ 239Pu-induced fission. Of these parameters, the only factor that accounted for the overprediction within reasonable bounds was a change in the value of the 239Pu v̅. The sensitivity analysis showed that a small change (1.14% reduction) in the value of v̅ dramatically improved the simulated results.