ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
E. M. Fearon, R. G. Garza, C. M. Griffith, S. R. Mayhugh, E. R. Mapoles, J. D. Sater, P. C. Souers, R. T. Tsugawa, J. R. Gaines, G. W. Collins
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 864-868
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25243
Articles are hosted by Taylor and Francis Online.
Regular equimolar deuterium-tritium is a mixture of 25 mol% T2-50% DT-25% D2. We have synthesized molecular DT of greater purity by the reaction run at 243 K. With both the alcohol and reactor-to-cryostat transfer lines at room temperature, we obtain 88 mol% DT purity. By cooling the alcohol and holding the transfer lines at 80 K, the yield rose to 95% DT. The DT disproportionated to D2 and T2 with a 1/e time constant of about 100 hr in the liquid at 20.5 K. Nuclear magnetic resonance data showed that the eventual T2-DT-D2 equilibrium is probably a “hot-atom” one.