ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
J.M. Miller, R.A. Verrall, D.S. MacDonald, S.R. Bokwa
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 649-656
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25208
Articles are hosted by Taylor and Francis Online.
Results from the CRITIC-I, vented capsule irradiation of Li2O are presented. A total lithium burnup of 0.74% has been achieved and 1500 curiesb of tritium have been collected over the first 15 months of irradiation. The temperature has been varied between 400 and 850°C, and the sweep gas composition changed progressively from pure He to He-1% H2. The amount of tritium recovered in the reduced form (HT) has increased from an initial value of approximately 50% with pure He sweep gas to a current value of 99% with He-1% H2. The increasing H2 concentration in the sweep gas has also reduced the time constants for tritium release (tritium residence time in the Li2O). Although the results indicate tritium release is controlled by surface desorption, simple first-order desorption theories do not explain all the observations. Most noticeably, for temperature increase tests, tritium release peak maxima can be delayed as long as 6 h and inventory changes depend not only on the initial temperature but also on the time at the initial temperature. An explanation is given based on the buildup of free oxygen in the ceramic from lithium burnup which leads to tritium trapping, perhaps as LiOH(T). Dissociation of LiOH(T) then occurs following an increase in the ceramic temperature, in addition to the simple first-order desorption process of isotopic exchange with H2 in the sweep gas.