OPG resumes planning for new nuclear at Darlington

November 25, 2020, 6:57AMNuclear News

Darlington nuclear power plant. Photo: OPG

Ontario Power Generation (OPG) recently announced the resumption of planning activities for future nuclear power generation at its Darlington site, with a goal of hosting a grid-size small modular reactor as soon as 2028. Originally, plans for the Darlington new nuclear project were focused on the construction of traditional large reactors.

Located in Clarington, Ontario, Darlington is the only site in Canada currently licensed for new nuclear. OPG was granted a license from the Canadian Nuclear Safety Commission (CNSC) in 2012 to allow site preparation activities for the project. The company has applied to renew the license, which is set to expire in August 2022. The CNSC will hold a public hearing on June 9–10, 2021, to consider the license renewal.

Early last month, OPG announced that it was working with three grid-scale SMR technology developers—GE Hitachi, Terrestrial Energy, and X-energy—to advance engineering and design work, with the goal of identifying options for future deployment.

Nuclear tech in space: What’s on the horizon?

November 4, 2020, 12:12PMNuclear News

Illustration of a Mars transit habitat and nuclear electric propulsion system. Image: NASA

NASA aims to develop nuclear technologies for two space applications: propulsion and surface power. Both can make planned NASA missions to the moon more agile and more ambitious, and both are being developed with future crewed missions to Mars in mind. Like advanced reactors here on Earth, space nuclear technologies have an accelerated timeline for deployment in this decade.

Space nuclear propulsion and extraterrestrial surface power are getting funding and attention. New industry solicitations are expected this month, and a range of proposed reactor technologies could meet NASA’s specifications for nuclear thermal propulsion (NTP). Nuclear electric propulsion could increase the feasibility of crewed missions to Mars with a shorter transit time, a broader launch window and more flexibility to abort missions, reduced astronaut exposure to space radiation and other hazards, expanded payload mass capabilities, and reduced cost.

Advanced reactor marketplace

October 29, 2020, 10:35AMNuclear News

Advanced reactor developers see potential markets for reactors in a range of sizes that offer clean, reliable, flexible, and cost-competitive power. Many have reached agreements with suppliers, utilities, and others to support the demonstration and possible deployment of their designs. Nuclear News is following these activities. Read on for updates and check back with Newswire often for more on the Advanced Reactor Marketplace.

Canada has invested Can$20 million in Terrestrial Energy’s 195-MW Integral Molten Salt Reactor through the Ministry of Innovation, Science and Industry, the company announced on October 15. In accepting the investment, Terrestrial Energy, which is based in Oakville, Ontario, has committed to creating and maintaining 186 jobs and creating 52 co-op positions nationally. In addition, Terrestrial Energy is spending at least $91.5 million on research and development. According to the company, the funds will assist with the completion of a key pre-licensing milestone with the Canadian Nuclear Safety Commission.

Two days earlier, Terrestrial Energy USA and Centrus Energy announced that they had signed a memorandum of understanding to evaluate the logistical, regulatory, and transportation requirements to establish a fuel supply for Integral Molten Salt Reactor power plants, which would use standard-assay low-enriched uranium at an enrichment level less than 5 percent.

It’s time for the United States to demonstrate advanced reactors

October 16, 2020, 9:04AMANS Nuclear CafeRita Baranwal

After talking about it for decades, the United States is finally ready to take the next step in demonstrating advanced reactor technologies.

We have the bipartisan support from Congress. We have the best innovators in the world. Now it’s time to see what U.S. nuclear companies can really do with the support and resources of the federal government.

The U.S. Department of Energy is all in on new nuclear technologies and we just made our boldest move yet—selecting and supporting two U.S. reactor designs that will be fully operational within the next 7 years.

After evaluating the competitive U.S. reactor design applications that were submitted to our new Advanced Reactor Demonstration Program funding opportunity announcement, TerraPower LLC and X-energy were awarded $160 million in initial funding to test, license, and build their advanced reactors under this aggressive timeframe. Pending future appropriations by Congress, the DOE will invest $3.2 billion over 7 years in these projects that will be matched by the industry teams.

ARDP picks divergent technologies in Natrium, Xe-100: Is nuclear’s future taking shape?

October 14, 2020, 7:21AMNuclear News

The Department of Energy has put two reactor designs—TerraPower’s Natrium and X-energy’s Xe-100—on a fast track to commercialization, each with an initial $80 million in 50-50 cost-shared funds awarded through the Advanced Reactor Demonstration Program (ARDP). In all, the DOE plans to invest $3.2 billion—with matching funds from industry—over the seven-year demonstration program, subject to future appropriations.

Energy Secretary Dan Brouillette announced the awards late in the day on October 13 in Oak Ridge, Tenn., and said, “These awards are a critical first step of a program that will strengthen our nation’s nuclear energy and technological competitiveness abroad, and position our domestic industry for growth, for increased job creation, and for even more investment opportunity. It’s absolutely vital that we make progress on this technology now.”

Defense Department invests in three microreactor designs

March 16, 2020, 11:16AMNuclear News

Three reactor developers got a boost on March 9 when they were each awarded a contract from the U.S. Department of Defense (DOD) to design a reactor that can fit inside a standard shipping container for military deployment. The DOD’s Strategic Capabilities Office (SCO), in partnership with the Department of Energy, proposes to build and demonstrate a 1–10 MWe reactor within four years that, if successful, could be widely deployed to support the DOD’s domestic and operational energy demands.

Looking high and low for HALEU

September 2, 2019, 10:00AMNuclear NewsSusan Gallier
The interior of the process building at the American Centrifuge Plant in Piketon, Ohio, where Centrus Energy plans to operate a HALEU demonstration cascade by June 2022. (Photo: Centrus Energy)

Advanced reactor cores are being designed for higher efficiencies and longer lifetimes, but to get there, they need high-assay low-enriched uranium (HALEU).

Enriched to between 5 and 19.75 percent fissile U-235, HALEU is packed with nuclear potential. It can be used as a feedstock for the demonstration of new fuel designs, from uranium alloys to ceramic pellets and liquid fuels. Those fuels can enable advanced reactor and microreactor demonstrations. Operating light-water reactors could potentially transition to HALEU uranium oxide fuels for extended operating cycles and improved plant economics.