Natalie Cannon (center) with fellow LANNS researcher Alex England (left) and Prof. Anna Erickson (right) work with the Clinical Linear Accelerator at Georgia Tech. (Photo: Woodruff School of Mechanical Engineering, Georgia Tech)
Some people are born leaders, and some people make themselves leaders. Take Natalie Cannon, a fourth-year doctoral candidate in the Department of Nuclear and Radiological Engineering and Medical Physics at the Georgia Institute of Technology. She has been driven to succeed since she was a teenager in Southern California, when she was inspired by NASA’s Mars Exploration Program.
A Purdue researcher examines the DPSC test specimen during a two-point load test. (Photo: Purdue University)
In a bid to tackle the primary obstacle in nuclear deployment—construction costs—those in industry and government are moving away from traditional methods and embracing innovative construction technologies.
Cutaway diagram of Marviken. (Image: Vattenfall)
In the late 1950s, the Swedish government decided to undertake a large-scale nuclear energy project. Situated about 75 miles southwest of Stockholm on the Baltic coast, Marviken was located on a peninsula, allowing for the cooling water intake and outlet to be located on either side of the peninsula. The coastal location also allowed the large reactor pressure vessel to be delivered by ship.
Fig. 1. Median capacity factor of all reactors. The median DER net capacity factor of the 92 reactors included in this survey for the three-year period 2022–2024 is 90.96 percent. The 92 reactors in this survey are being compared with 94 reactors in 2019–2021 (when Indian Point-3 and Palisades were also included); 98 in 2016–2018; 99 in 2013–2015. There were 104 reactors in the five three-year periods prior to that. There were 53 reactors in the database in 1980–1982, and in the five subsequent periods there were 60, 77, 97, 102, and 103.
Nuclear generation has inertia. Massive spinning turbines keep electricity flowing during grid disturbances. But nuclear generation also has a kind of inertia that isn’t governed by the laws of motion.
Starting—and then finishing—a power reactor construction project requires significant upfront effort and money, but once built a reactor can run for decades. Capacity factors of U.S. reactors have remained near 90 percent since the turn of the century, but it took more than a decade of improvements to reach that steady state. The payoff for nuclear investments is long-term and reliable.
Fig. 1. The systems that make up the IWMS and their interdependencies.
Nuclear energy produces about 9 percent of the world’s electricity and 19 percent of the electricity in the United States, which has 94 operating commercial nuclear reactors with a capacity of just under 97 gigawatts-electric. Each reactor replaces a portion of its nuclear fuel every 18 to 24 months. Once removed from the reactor, this spent (or used) nuclear fuel (SNF or UNF) is stored in a spent fuel pool (SFP) for a few years then transferred to dry storage.
An international team of researchers have collaborated to reduce operational risk and realize a vision of long-term success for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energy’s Hanford Site near Richland, Wash.
Above: WTP workers add glass beads, called “frit,” to the melter inside the plant’s Low-Activity Waste Facility. (Photo: Bechtel National Inc.)
For over a decade, the DOE’s Hanford Field Office (HFO) has been working with national laboratories, universities, and glass industry experts to establish capabilities and generate data to increase the confidence in a successful startup and transition to full-time operations at the WTP.
April 16, 2025, 3:39PMRadwaste SolutionsRichard “Ricky” Furr, Larry McDougal, and John Mayer The CR-3MP is loaded on the barge at the Crystal River-3 site in Florida on January 17, 2024. (Photos: Orano DS)
The Optimized Segmentation process patented by Orano Decommissioning Services was successfully implemented for the first time at the Crystal River Unit 3 (CR-3) decommissioning project in Florida [1]. Using this approach, Orano was able to avoid the time- and resource-intensive process of packaging components into numerous standardized waste containers and significantly reduced the required segmentation activities.
Historic nuclear plant restart could happen in 2025.
Palisades nuclear power plant on Lake Michigan, at night. (Photo: Holtec)
Mike Mlynarek believes in this expression: “In the end it will be OK; and if it’s not OK, it’s not the end.”
As the site vice president at Palisades nuclear power plant in Covert Township, Mich., Mlynarek is overseeing one of the most exciting projects in the United States nuclear power industry. If all goes according to plan, Holtec’s Palisades plant will be splitting atoms once again by the end of 2025 and become the first U.S. nuclear facility to restart after being slated for decommissioning.
SRNL senior scientist Travis Deason demonstrates for lab fellow David Diprete the search for appropriate crystals of novel actinide materials using a microscope located in a radiological containment unit. (Photo: SRNS/Lj Gay)
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
A small Central American nation considers thorium for civilian reactors
March 28, 2025, 3:09PMNuclear NewsJohn Kutsch and Rauli Partanen In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Detailed view of the Lego CROCUS reactor (as seen with Lego Studio software), with the vessel open to reveal the core structure. (Image: Vincent Lamirand)
For many of us, the height of our accomplishments with Lego blocks might have been constructing little square houses as children. For others, these versatile building blocks are a medium for creating complex models of sophisticated machinery—models that have practical and educational applications. One such individual is ANS member Vincent Lamirand, a reactor physicist at the École Polytechnique Fédérale de Lausanne (EPFL) Laboratory for Reactor Physics and Systems Behavior (LRS) in Switzerland.
A NIFT-E testing capsule loaded with graphite samples.
As nations look to nuclear energy as a source of reliable electricity and heat, researchers and industry are developing a new generation of nuclear reactors to fill the need. These advanced nuclear reactors will provide safe, efficient, and economical power that go beyond what the current large light water reactors can do.
But before large-scale deployment of advanced reactors, researchers need to understand and test the safety and performance of the technologies—especially the coolants and materials—that make them possible.
Now, the United States and the United Kingdom have teamed up to test hundreds of advanced nuclear materials.