Nuclear Video Matinee: Offshore Nuclear PlantsANS Nuclear CafeApril 25, 2014, 6:00AM|ANS Nuclear CafeJacopo Buongiorno of the Massachusetts Institute of Technology discusses some of the advantages of a nuclear reactor concept under development in collaboration with industry and other universities: floating off-shore nuclear power plants, constructed entirely in a shipyard, anchored off the coast, linked to the electric grid via undersea cable. Earthquakes and tsunamis would not be a threat, the ocean would be readily available to serve as a heat sink for reactor cooling, emergency evacuation planning would be a lesser consideration...A potentially revolutionary advance in nuclear engineering? The concept has made quite a splash in the media-the latest being more details via a story in The Economist.Thanks to Massachusetts Institute of Technology YouTube and the Nuclear Street News Team.Tags:mitnuclear matineeShare:LinkedInTwitterFacebook
Game-playing AI technique may lead to cheaper nuclear energyIn this AI-designed layout for a boiling water reactor, fuel rods are ideally positioned around two fixed water rods to burn more efficiently. MIT researchers ran the equivalent of 36,000 simulations to find the optimal configurations. Colors correspond to varying amounts of uranium and gadolinium oxide in each rod. Image: Majdi Radaideh/MITResearchers at the Massachusetts Institute of Technology and Exelon show that by turning the nuclear fuel assembly design process into a game, an artificial intelligence system can be trained to generate dozens of optimal configurations that can make each fuel rod last about 5 percent longer, saving a typical power plant an estimated $3 million a year, the researchers report.The AI system can also find optimal solutions faster than a human and can quickly modify designs in a safe, simulated environment. The results appear in the journal Nuclear Engineering and Design.Go to Article
ARC-20 cost-share funds go to ARC Nuclear, General Atomics, and MITDesigns chosen for ARC-20 support could be commercialized in the mid-2030s. Graphic: DOEThe Department of Energy’s Office of Nuclear Energy (DOE-NE) has named the recipients of $20 million in Fiscal Year 2020 awards for Advanced Reactor Concepts–20 (ARC-20), the third of three programs under its Advanced Reactor Demonstration Program (ARDP). The three selected teams—from Advanced Reactor Concepts LLC, General Atomics, and the Massachusetts Institute of Technology—will share the allocated FY20 funding for ARC-20 and bring the total number of projects funded through ARDP to 10. DOE-NE announced the news on December 22.The DOE expects to invest a total of about $56 million in ARC-20 over four years, with industry partners providing at least 20 percent in matching funds. The ARDP funding opportunity announcement, issued in May 2020, included ARC-20 awards, Advanced Reactor Demonstration awards, and Risk Reduction for Future Demonstration awards.Go to Article
Is proximity key to understanding interactions on the nuclear scale?An MIT-led team found that the formulas describing how atoms behave in a gas can be generalized to predict how protons and neutrons interact at close range. Image: Collage by MIT News. Neutron star image: X-ray (NASA/CXC/ESO/F.Vogt et al); Optical (ESO/VLT/MUSE & NASA/STScI)In an MIT News article playfully titled “No matter the size of a nuclear party, some protons and neutrons will always pair up and dance,” author Jennifer Chu explains that findings on the interactions of protons and neutrons recently published in the journal Nature Physics show that the nucleons may behave like atoms in a gas.A Massachusetts Institute of Technology–led team simulated the behavior of nucleons in several types of atomic nuclei using supercomputers at Los Alamos National Laboratory and Argonne National Laboratory. The team investigated a range of nuclear interaction models and found that formulas describing a concept known as contact formalism can be generalized to predict how protons and neutrons interact at close range.Go to Article
A life in nuclear reactor physics and designYou may have read the abbreviated version of this article in the November 2020 issue of Nuclear News. Now here's the full article—enjoy!I have enjoyed a long and stimulating career in applied nuclear physics—specifically nuclear reactor physics, nuclear fusion plasma physics, and nuclear fission and fusion reactor design—which has enabled me to know and interact with many of the scientists and engineers who have brought the field of nuclear energy forward over the past half-century. In this time I have had the fortune to interact with and contribute (directly and indirectly) to the education of many of the people who will carry the field forward over the next half-century.Go to Article
A closer look at SPARC’s burning plasma ambitionsCutaway of the SPARC engineering design. Image: CFS/MIT-PSFC, CAD rendering by T. HendersonSeven open-access, peer-reviewed papers on the design of SPARC, Commonwealth Fusion Systems’ (CFS) fusion tokamak, written in collaboration with the Massachusetts Institute of Technology’s Plasma Science and Fusion Center, were published on September 29 in a special edition of the Journal of Plasma Physics.The papers describe a compact fusion device that will achieve net energy where the plasma generates more fusion power than used to start and sustain the process, which is the requirement for a fusion power plant, according to CFS.The timeline for this planned device sets it apart from other magnetic confinement fusion tokamaks: Construction is to begin in 2021, with the device coming on line in 2025.CFS expects the device to achieve a burning plasma—a self-sustaining fusion reaction—and become the world’s first net energy (Q>1) fusion system. The newly released papers reflect more than two years of work by CFS and the Plasma Science and Fusion Center to refine their design. According to CFS, the papers apply the same physics rules and simulations used to design ITER, now under construction in France, and predict, based on results from existing experiments, that SPARC will achieve its goal of Q>2. In fact, the papers describe how, under certain parameters, SPARC could achieve a Q ratio of 10 or more.Go to Article
JPP lays out SPARC fusion physics basisCutaway of the SPARC engineering design. Image: CFS/MIT-PSFC, CAD Rendering by T. HendersonA special issue of the Journal of Plasma Physics gives a glimpse into the physics basis for SPARC, the DT-burning tokamak being designed by a team from the Massachusetts Institute of Technology and Commonwealth Fusion Systems. The special issue was announced in a September 29 post on the Cambridge University Press blog Cambridge Core.The special JPP issue includes seven peer-reviewed articles on the SPARC concept, which takes advantage of recent breakthroughs in high-temperature superconductor technology to burn plasma in a compact tokamak design.Go to Article
Metal frameworks could capture krypton-85 during reprocessingSeparation of Kr-85 from spent nuclear fuel by a highly selective metal organic framework. Image: Mike Gipple/National Energy Technology LaboratoryAccording to a story published by the Massachusetts Institute of Technology on July 24, the capture of gaseous fission products such as krypton-85 during the reprocessing of spent nuclear fuel could be aided by the adsorption of gasses into an advanced type of soft crystalline material, metal organic frameworks(MOF), which feature high porosity and large internal surface areas that can trap an array of organic and inorganic compounds.Go to Article
Web workshop: Separating nuclear reactors from the power block with heat storageA three-part free webinar workshop, Separating Nuclear Reactors from the Power Block with Heat Storage: A New Power Plant Design Paradigm, will run for three upcoming Wednesdays, starting this week on July 29. The workshop is being hosted jointly by the Massachusetts Institute of Technology (MIT), Idaho National Laboratory (INL), and the Electric Power Research Institute (EPRI).Go to Article
TEPCO Updates on Fukushima Daiichi Conditions (with video)Special ANS Friday Matinee edition by Will DavisGo to Article
ANS Friday Matinee - April 20, 2016Our Friday Matinee for today is the latest of the excellent Vogtle Timeline videos produced by Georgia Power to document the construction progress of Vogtle Units 3 and 4. The series stands as one of the most thorough video documentations of nuclear plant construction ever filmed, and this latest update is every bit as informative as its predecessors.Go to Article