ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The Meta-Vistra deal: A closer look
With last Friday's announcement regarding its vision for nuclear energy, Meta has entered into 20-year power purchase agreements (PPAs) for more than 2,600 MW of electricity from a combination of three Vistra-owned nuclear plants to support the tech behemoth's planned operations in the PJM region.
Workshop 1 (below)
Workshop 2
Wednesday, November 10, 2021 | 12:40-2:40 PM EST
Cost: $100 Workshop Only; $50 Full Meeting Paid Attendee
Ramprasad (Ram) SampathCentroid LAB
Steven PrescottIdaho National Laboratory
Schedule
Description: The Fire Risk Investigation in 3D (FRI3D) software was initially developed as part of the research for enhanced fire analysis under Light Water Reactor Sustainability (LWRS) program. The goal of this software has two parts: (1) provide industry with a tool to simplify the process for developing and using detailed fire models; (2) provide a back-end for future enhanced fire analysis and possible extension to dynamic probabilistic risk analysis models. The FRI3D software was developed over the last two years to integrate 3D spatial modeling with existing fire probabilistic risk assessment (PRA) models and fire simulation codes.
Attendees will receive a certificate of attendance for these workshops.
Workshop #1 will be recorded and have access to the recorded presentations after the workshop.
Purpose of Workshop: Learn how to use FRI3D software to perform fire modeling and PRA. FRI3D encapsulates the fire and plant data into a unified database and simplifies the process with automated simulations using CFAST, THIEF, Heat Soak Methods. The workshop will serve as a guide to use FRI3D to perform Fire PRA and advanced fire modeling.
Presenter Bios: Ramprasad (Ram) Sampath is the founder and CEO of Centroid LAB an engineering software consultancy firm performing Advanced Visualization and Computational Dynamics and Simulations.
Steven Prescott, is a software analysis/integration engineer for the Risk Assessment and Management Services Department at Idaho National Laboratory. He specializes scientific and technical software design and development.
Wednesday, November 10, 2021 | 12:40-4:10 PM EST
Bengt LydellSigma-Phase Inc.
Tatsuya Sakurahara University of Illinois Urbana-Champaign
Klaus HeckmannGesellschaft für Anlagen- und
Robertas AlzbutasLithuanian Energy Institute
Zahra MohagheghUniversity of Illinois Urbana-Champaign
Description: To facilitate the deployment of advanced nuclear power reactors, it is time-critical to focus on the risk-informed analysis of advanced reactors prior to, or in parallel with, technology developments. In recent years, there have been major efforts in the PRA developments for advanced reactors and its use in risk-informed decision-making, such as the Licensing Modernization Project (LMP), development of Title 10 of the Code of Federal Regulations, Part 53 (10CFR53) and other regulatory guidance by the Nuclear Regulatory Commission (NRC), as well as issuance of the ASME/ANS Non-LWR Probabilistic Risk Assessment Standard (RA-S-1.4-2021); however, there are still significant research needs for methodology developments. One of the key methodological challenges is that a design-specific experiential database is often limited or not available for advanced reactors, while the applicability and relevancy of the experiential data from the existing fleet to advanced reactors may be questionable due to differences in design principles, physical conditions, and operation and maintenance procedures. This workshop discusses the challenges and highlights possible research paths to alleviate them. As an example of the recent research activities, the methodological advancements and benchmark studies in an International Atomic Energy Agency (IAEA) Coordinated Research Project, “Methodology for Assessing Pipe Failure Rates in Advanced Water Cooled Reactors (WCRs),” are demonstrated. Based on the outcomes and insights from this IAEA project and other recent research activities, recommendations regarding the risk-informed analysis of advanced reactors are provided.
Purpose of Workshop: Identify the needs and methodological challenges in risk-informed analysis for advanced nuclear power reactors. Discuss research directions and paths to address those needs and challenges to facilitate the deployment of advanced reactors. As a case study, demonstrate the ongoing IAEA coordinated research project and provide recommendations.
This workshop will be led by the Socio-Technical Risk Analysis (SoTeRiA) Research Laboratory in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois at Urbana-Champaign.
Presenter Bios:
Last modified November 9, 2021, 2:22pm EST