ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Faranak Nekoogar (Dirac Solutions Inc.), Farid Dowla (LLNL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1803-1810
Recent developments in ultra-wideband (UWB) technology have shown great promise in wireless transmission of sensor data in complex environments that are hostile to RF propagation, such as nuclear facilities. UWB RF communications is particularly important for reliable communications for its robust link despite the multipath phenomenon in heavy metallic environment of nuclear reactors, as well as in addressing penetration challenges through thick nuclear concrete walls. Although UWB signaling and unique data modulations are critical for successful communications in such harsh propagation environments, a fixed UWB radio hardware architecture, with fixed frequency and transmit power level, could still be expected to face difficulties in various nuclear facilities as their RF propagation environment might be different with unique and dynamic characteristics. In this paper we report on a newly developed UWB system based on softwaredefined- radio (SDR) that is capable of adapting its communications parameters to its propagation environment for optimized transmission/reception results in various nuclear facilities. This new UWB-SDR system has been successfully laboratory and field tested and is ready for testing and evaluation in commercial reactors. In this paper we briefly review the advantages of UWB communications for nuclear facilities and focus on details of the unique UWB-SDR architecture of the newly developed sensor communications system. Then we present experimental results conducted at the UC Davis McClellan Nuclear Center, and conclude the paper with a summary of the main observations and path for future research.