ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
R. S. Schley, D. H. Hurley, Z. Hua, S. J. Reese (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1135-1142
Microstructure evolution due to irradiation in a nuclear reactor can have a dramatic effect on material properties. A better understanding of this evolution is necessary for developing improved nuclear fuels and materials. The ability to measure such changes in real time is extremely limited due to the harsh conditions, high radiation fields and limited access of the reactor environment. Through carefully designed experiments, measurement of elastic properties can be tied directly to microstructure. We present the methodology, design and deployment plan for an instrument that has been developed to monitor grain microstructural changes during irradiation. Our measurement approach involves exciting and measuring the resonant frequency of a thin cantilever beam. Excitation and detection of the flexural vibrations of the beam are accomplished using optical methods which require only an optical fiber connection between the instrumentation and the sample. This technique has been demonstrated in a laboratory setting to monitor the recrystallization of highly textured copper during high temperature annealing. A test capsule incorporating this technique has been developed for in-reactor testing. The capsule has been designed to be compatible with a reusable test module which allows simplified insertion in the TREAT reactor at INL. Irradiation in the TREAT reactor to monitor the recrystallization transition of a pure metal is planned for 2019.