ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. S. Schley, D. H. Hurley, Z. Hua, S. J. Reese (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1135-1142
Microstructure evolution due to irradiation in a nuclear reactor can have a dramatic effect on material properties. A better understanding of this evolution is necessary for developing improved nuclear fuels and materials. The ability to measure such changes in real time is extremely limited due to the harsh conditions, high radiation fields and limited access of the reactor environment. Through carefully designed experiments, measurement of elastic properties can be tied directly to microstructure. We present the methodology, design and deployment plan for an instrument that has been developed to monitor grain microstructural changes during irradiation. Our measurement approach involves exciting and measuring the resonant frequency of a thin cantilever beam. Excitation and detection of the flexural vibrations of the beam are accomplished using optical methods which require only an optical fiber connection between the instrumentation and the sample. This technique has been demonstrated in a laboratory setting to monitor the recrystallization of highly textured copper during high temperature annealing. A test capsule incorporating this technique has been developed for in-reactor testing. The capsule has been designed to be compatible with a reusable test module which allows simplified insertion in the TREAT reactor at INL. Irradiation in the TREAT reactor to monitor the recrystallization transition of a pure metal is planned for 2019.