ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Sarah Miele, Pranav Karve, Sankaran Mahadevan (Vanderbilt Univ), Vivek Agarwal (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 976-982
In this work, we investigate the suitability of a novel dynamics-based method, namely vibroacoustic modulation (VAM), for the detection and localization of cracks caused by the alkali-silica reaction (ASR). ASR is a chemical reaction between the cement and certain aggregates containing amorphous silica. In a VAM test, the structural component is excited using two frequencies. The frequency modulation (and hence the nonlinear structural behavior) appears as sidebands around the higher (probing) frequency in the linear spectrum (LS) of the measured response in the neighborhood of the damage zone. A map of the magnitude of such sidebands can be used to detect and localize the damage [1]. We perform laboratory experiments to investigate VAM-based damage diagnosis in thick concrete components. We describe laboratory testing on a cement slab containing four pockets of reactive aggregates placed at known locations. Our experiments show that VAMbased testing with optimized test parameters and suitable sensor density can potentially be used to detect and localize cracks in thick concrete structures.