ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
Emil Wingstedt (IFE), Olli Saarela (VTT Technical Research Centre of Finland)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 721-732
Data reconciliation is a commonly used technique for correcting random errors in measurement data in the process industry. The technique uses models describing the mutual relationships of process variables related to available measurements. These models are based on knowledge of process physics. Measurement readings are adjusted so that especially mass and energy balances described by the model match. The technique has proven effective in reducing measurement uncertainties. The paper presents a Monte Carlo study of error propagation in data reconciliation of the turbine section of a VVER 440 nuclear power plant. Uncertainties in model parameters describing turbine dry efficiencies and the quality of steam exiting the steam generators are considered in addition to measurement noise. The impact of these factors on estimated reactor thermal power is evaluated, both individually and as joint impacts. For both the measurement signals and the plant parameters, the resulting effect on the uncertainty of thermal power is lower than the 2% uncertainty for reasonable levels of added noise. These results support the use of data reconciliation for reducing the uncertainty in thermal power.