ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Emil Wingstedt (IFE), Olli Saarela (VTT Technical Research Centre of Finland)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 721-732
Data reconciliation is a commonly used technique for correcting random errors in measurement data in the process industry. The technique uses models describing the mutual relationships of process variables related to available measurements. These models are based on knowledge of process physics. Measurement readings are adjusted so that especially mass and energy balances described by the model match. The technique has proven effective in reducing measurement uncertainties. The paper presents a Monte Carlo study of error propagation in data reconciliation of the turbine section of a VVER 440 nuclear power plant. Uncertainties in model parameters describing turbine dry efficiencies and the quality of steam exiting the steam generators are considered in addition to measurement noise. The impact of these factors on estimated reactor thermal power is evaluated, both individually and as joint impacts. For both the measurement signals and the plant parameters, the resulting effect on the uncertainty of thermal power is lower than the 2% uncertainty for reasonable levels of added noise. These results support the use of data reconciliation for reducing the uncertainty in thermal power.