ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
David E. Holcomb (ORNL), Roger A. Kisner (ORNL (retired)), K. Kyle Reed, James Bate, James R. Keiser (ORNL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 222-237
A novel in-situ corrosion sensor for structural alloys exposed to molten salts has been initially demonstrated. The measurement is based upon observing the change in magnetic susceptibility of salt wetted structural alloys as corrosion occurs. In halide salts corrosion of structural alloys proceeds primarily through dissolution of the least noble component of the alloy into the melt. All currently available structural alloys intended for use with molten salt reactors (MSRs) include nickel, chromium, and iron. Chromium is preferentially oxidized from the alloy surface by exposure to halide salts at high temperature. Diffusion within the alloy results in progressively deeper depletion of chromium from the alloy surface. Relevant chromium bearing structural alloys are paramagnetic. However, once the chromium has been depleted, they become ferromagnetic. Thus, structural alloy corrosion in an MSR results in development of a ferromagnetic surface layer whose depth increases with increasing corrosion. The corrosion sensor functions by employing the progressive increase in ferromagnetism as a transduction mechanism through including the corroding alloy in a magnetic circuit. To date we have characterized the sensor response of structural alloy samples with varying degrees of corrosion at room temperature. Over the next year, we plan to demonstrate sensor performance at MSR operating temperatures (up to 750 °C) in a piping geometry. Development of the sensor remains a work in progress as the aim is to install a corrosion monitor to operate over extended periods with only the corroding component exposed to salt (which could be the pipe itself). This configuration can be accomplished so that measurement magnetics and electronics are external to the pipe. Presumably, the instrument would continuously relay corrosion progress via electronic communications.