ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Anthony L. Crawford, Thomas Ulrich, Victor Walker (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 166-173
This paper presents an innovative collaborative haptic-hand user interface which employs a novel method to recognize the real-time geometric hand parameters of each individual user (e.g. finger lengths, joint locations, hand posture, etc.). The novelty of this method is that unlike conventional user interfaces (e.g. keyboard or mouse), which only allow human-machine information transfer via one dimensional interactions at the finger-tips, this system has the potential to interpret the intent of a user’s movement by resourcing additionally harvested hand gesture information. The high number of degrees of freedom (DOF) and complexity associated with the hand make it ideal for use to control or communicate particularities associated with multi-variable complex physics system such as the that of a nuclear reactor or it’s sub-systems. Despite the fact that unconventional hand gesture monitoring systems are available (e.g. cyber grasp and Leap Motion) they lack the full haptic bi-lateral communication provided by the developed system and/or the methods to identify the hand gestures are restricted by a glove, which is cumbersome, or visual means, which are subject to intermittent data due to shadowing effects. Highly enabling particularities associated with the device include 3-DOF haptic feedback at the finger-tips, high-rate (>1kHz) FPGA based position and force monitoring, and the patented efficient user hand geometry calibration method. The efficient method, based on sphere mathematics and statistical confidence, only requires ~10 seconds of the user fluttering their fingers to achieve its calibration aim. The consequential gesture information was shown to both directly communicate gesture to a robotic hand and promises more full bilateral haptic communication between the user’s hand and their cognition than any other device available.