ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Yue Jin, Faith R. Beek, Fan-Bill Cheung (Penn State), Stephen M. Bajorek, Kirk Tien, Chris L. Hoxie (NRC)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 98-108
In the current study, a new mass quality correlation was developed for the dispersed flow film boiling (DFFB) regime in a rod bundle geometry during bottom reflood. The new correlation was based on the fundamental conservation equations such that the physics during the reflood process can be adequately captured. It is found that the actual mass quality as well as the vapor drift velocity in the DFFB regime are functions of the void fraction, interfacial heat transfer, vapor superheat, droplet size, quench front location and the fluid properties. The Rod Bundle Heat Transfer (RBHT) reflood tests were used to verify the validity of the new correlation and to determine the coefficients. It was found that the current model is able to predict the two-phase mass quality well within 10% error when compared to experimental data.