Alumina-forming MAX phase ternary carbides are being considered as protective coatings on zirconium alloys as accident tolerant fuel (ATF) cladding because of their resistivity against high-temperature steam oxidation during accident scenarios. This study attempted to synthesize three types of Al-containing MAX phase carbides (Ti?AlC, Cr?AlC and Zr?AlC) as coatings on Zircaloy-4 substrates via deposition of elemental nanoscale multilayer thin films using magnetron sputtering, and subsequent thermal annealing in argon. Formation of Ti?AlC and Cr?AlC MAX phases was confirmed after annealing at 800°C and 550°C, respectively, while growth of Zr(Al)C carbide rather than Zr?AlC MAX phase was observed in the Zr-C-Al system. Oxidation of the three coated samples at 1000°C in steam for 1 hour revealed no protective effect of the Ti?AlC and Zr(Al)C coatings with significant spallation and cracking. The Cr?AlC coatings possess superior oxidation resistance and self-healing capability with a thin and dense ?-Al?O? layer growth on the surface, which shows good promise as a candidate for coated ATF claddings.