Uranium Silicide (U3Si2) is being evaluated as a fuel for use in light water reactors as its desirable thermophysical properties suggest an improvement over UO2 with respect to accident tolerance, However, much is still unknown about the in-reactor performance of U3Si2, making an accurate assessment of the fuel challenging. To better understand the behavior of U3Si2 across a wide range of possible environments, high temperature compressive creep testing has been performed on U3Si2 pellets. Using the combination of constant stress and constant temperature testing, a numerical model was developed that can predict both primary and secondary creep rates under a wide range of temperature and stress conditions. This model was implemented in BISON, a coupled multi-physics finite element nuclear fuel performance code, to simulate the performance of U3Si2 under a range of reactor conditions and analyze the effect of creep on fuel behavior from startup through pellet-clad mechanical interaction (PCMI). These models indicate that while thermal and irradiation volumetric effects are dominant during normal operation, under extreme stresses and temperatures creep can become a significant factor. Specifically, under PCMI creep was found to have a noticeable impact on the rate of stress change in the cladding and could extend the lifetime of the cladding by months.