ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Hongbin Zhang (INL), Cole Blakley (Utah State Univ)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 252-261
An approach to uncertainty quantification and sensitivity analysis with coupled simulations of VERACS/ FRAPCON and VERA-CS/BISON was developed within the Multi-Physics Best Estimate Plus Uncertainty (MP-BEPU) safety analysis framework LOTUS. A single assembly model was developed for the VERA-CS simulations and FRAPCON and BISON models were developed for the hot rod in the assembly. Uncertainty quantification and sensitivity analysis were performed with 23 uncertain input parameters for the coupled VERA-CS/FRAPCON simulations and with 31 uncertain input parameters for the coupled VERA-CS/BISON simulations. The maximum fuel centerline temperature (MFCT) and gap conductance at peak power (GCPP) were selected as the figures of merit (FOM). Pearson and Spearman Correlation Coefficients, Sobol Indices and Moment Independent Delta Measures were considered in the sensitivity analysis.