ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Casting a wider net
Craig Piercycpiercy@ans.org
Recently, a colleague related to me a conversation overheard at an industry forum in which ANS was referred to as a group of “academics” who were of limited use in expanding the workforce needed to deliver a nuclear resurgence.
While not new, this criticism still gets me hypertensive when I hear it. Many still see ANS as a bunch of academics and “labbies” disconnected from the day-to-day commercial nuclear race.
Yet, I also understand the charge is not entirely without foundation. Pop your head into a technical session at an ANS national conference, and you’re bound to hear academics presenting research that, to nontechnical ears, sounds esoteric.
A. Mansour, E. Laurien (Univ of Stuttgart)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1-9
A model for steam condensation in the presence of non-condensable gases is developed in the CFD package ANSYS CFX 16.1. Based on the Euler-Euler two-fluid approach, this model considers two different phases: a continuous gas phase, which is a mixture of air and steam, and a disperse liquid phase consisting of water droplets. Using the data of the CONAN test facility, the numerical error is quantified using the Grid Convergence Index method. The simulation results are then validated using the experimental data of the CONAN test facility. Finally, the applicability of the condensation modeling in the model containment THAI+ is tested.