ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Hakim Benabderrahmane (Andra), Johan Holmen (Golder Associates), Olivier Stab (Ecole Nationale des Mines de Paris), Jacques Brulhet (Andra)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 156-163
Safety assessment of a deep geological repository for radioactive wastes (IHLLW) requires identification of potential flow paths and the associated travel times for radionuclides originating at repository depth. The planned French repository will be located at great depths in the Callovo-Oxfordian clay formation of the multi-layered system of Paris Basin. Hydrogeological performance of the planned radioactive waste repository relies on analysis and assessment of the geodynamic evolution impact on groundwater flow behaviour in the multi-layered aquifer system through the next million of years. Numerical simulations coupling the geodynamic evolution and the groundwater flow describe how the tectonic uplift and erosion/sedimentation processes affect (i) the long term transient flow behaviour and (ii) the hydrogeological performance measures. Hydrogeological performance assessment of the potential repository site is performed by the use of particles transport model using a 3D transient flow field induced by: (i) deformation of the multi-layered aquifer system resulting from the differential tectonic uplift, (ii) evolution of the outcrop zones governed by erosion and incision of the geological layers and (iii) the climate changes. Outlets of the hydrogeological system are located and the associated transit times from the repository are estimated.