ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
J. H. Kim, B. T. Min, I. K. Park, S. W. Hong
Nuclear Technology | Volume 169 | Number 3 | March 2010 | Pages 239-251
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT169-239
Articles are hosted by Taylor and Francis Online.
Three triggered steam explosion experiments using corium melts of various compositions were performed in the TROI facility. The interaction vessel was 0.3 m in diameter. The melt compositions were 70:30 (UO2:ZrO2) corium, pure zirconia, and partially oxidized corium (UO2:ZrO2:Zr:SS = 53.91:23.09:12.00:11.00 in weight percent). The test with 70:30 corium was performed with a 0.95-m-deep water pool under an elevated pressure of 0.205 MPa, while the others were performed with a 1.3-m-deep water pool under atmospheric pressure. The water temperature was maintained at room temperature. The melt mass released to the water pool was [approximately]10 kg for each test. The test with 70:30 corium resulted in a triggered steam explosion, considering the long duration of the dynamic pressure and the large amount of fine debris. The dynamic pressure trace from the steam explosion seemed to be superimposed on that from the external trigger. The test with pure zirconia led to multiple spontaneous steam explosions before any external triggering. The zirconia melt confirmed its explosivity. The spontaneous steam explosion with pure zirconia seems not to be affected by the water depth and diameter of the interaction vessel. The test with partially oxidized corium also resulted in a spontaneous steam explosion before an external triggering. These results are different from the previous TROI tests with 80:20 corium in a narrow interaction vessel of 0.3-m diameter, in which no spontaneous steam explosions occurred. The geometry of the interaction vessel used in these tests does not seem to influence the occurrence of a steam explosion, but the corium composition does affect the triggerability of it.