ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
E. Kozlova, I. Strasik, A. Fertman, E. Mustafin, T. Radon, R. Hinca, M. Pavlovic, G. Fehrenbacher, H. Geissel, A. Golubev, H. Iwase, D. Schardt
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 747-751
Heavy Ion Transport | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9300
Articles are hosted by Taylor and Francis Online.
The activation of structures and surroundings of new high-intensity heavy-ion accelerators like the Facility for Antiproton and Ion Research (FAIR) is an important issue. Monte Carlo codes such as FLUKA allow the prediction of the production of individual radioactive isotopes and the induced radioactivity that causes the main contribution to the radiation exposure of personnel. The work is a benchmark study of activation predictions for uranium beams with 500 and 950 MeV/u deposited in copper and stainless steel targets. Precise gamma spectrometry measurements for isotope identification have been carried out with a HPGe detector. All gamma-emitting radionuclides with half-lives of more than 2 days that contribute significantly to the residual dose rates have been studied. The benchmark study shows that FLUKA is a suitable code for the prediction of induced radioactivity at medium-energy heavy-ion accelerators.