ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
E. Kozlova, I. Strasik, A. Fertman, E. Mustafin, T. Radon, R. Hinca, M. Pavlovic, G. Fehrenbacher, H. Geissel, A. Golubev, H. Iwase, D. Schardt
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 747-751
Heavy Ion Transport | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9300
Articles are hosted by Taylor and Francis Online.
The activation of structures and surroundings of new high-intensity heavy-ion accelerators like the Facility for Antiproton and Ion Research (FAIR) is an important issue. Monte Carlo codes such as FLUKA allow the prediction of the production of individual radioactive isotopes and the induced radioactivity that causes the main contribution to the radiation exposure of personnel. The work is a benchmark study of activation predictions for uranium beams with 500 and 950 MeV/u deposited in copper and stainless steel targets. Precise gamma spectrometry measurements for isotope identification have been carried out with a HPGe detector. All gamma-emitting radionuclides with half-lives of more than 2 days that contribute significantly to the residual dose rates have been studied. The benchmark study shows that FLUKA is a suitable code for the prediction of induced radioactivity at medium-energy heavy-ion accelerators.