ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NS Savannah soon open to the public
The world’s first nuclear-powered merchant ship, the NS Savannah, will have a public site visit in Baltimore, Md., on Saturday, February 21.
To register for the event and find up-to-date details on the event’s address, time, and more, click here.
C. Theis, D. Forkel-Wirth, D. Lacarrère, S. Roesler, H. Vincke
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 713-718
Accelerators | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9295
Articles are hosted by Taylor and Francis Online.
Operating a high-energy accelerator like the Large Hadron Collider (LHC) requires a state-of-the-art monitoring system for radiation protection. In the vicinity of the accelerator as well as in the accessible areas behind thick shielding, a unique mixed radiation environment is encountered that consists of different particle types with energies ranging from fractions of electron volt up to several giga-electron-volts. Consequently, the correct assessment of ambient dose equivalent poses a challenging task and requires appropriate field-specific calibration methods, in particular as no adequate calibration sources exist. This circumstance motivated the development of a more accurate field calibration method for the LHC, based on benchmarked FLUKA Monte Carlo simulations. The method of obtaining such field calibration coefficients for IG5 high-pressure ionization chambers is exemplified in a case study for the LHCb experiment. Comparing these factors to calibration source-based values shows over- or underestimation of the actual dose by the source-based coefficient, depending on the location of the monitor.