ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Bin Han, Bryan Bednarz, Yaron Danon, Robert Block, X. George Xu
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 576-579
Shielding Materials | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9246
Articles are hosted by Taylor and Francis Online.
High-energy photons from medical accelerators are used to treat tumors in cancer patients. One consequence is the production of neutrons from photonuclear interactions in the high-Z accelerator components. The release and capture of neutrons produce radioactive nuclei that can irradiate patients and medical personnel. The goal of this study is to develop a method for quantifying the activation of accelerator components using MCNPX. To benchmark this method, we took activation measurements from the irradiation of a series of zinc plates using a 55-MeV electron beam and compared them with MCNPX calculations. The measured cumulative photon-induced activity from 68Zn(,p)67Cu interactions in all of the plates was 10.8 MBq, which is in 5.4% agreement with the calculated value of 10.2 ± 1.1 MBq. Based on these results, a series of simulations were performed in order to optimize the photon- and neutron-induced activity in tungsten for subsequent experiments. The radioactivity from activated short-lived isotopes and subsequent buildup can be significant from repeated accelerator operations during a day. The approach described in this paper is useful in quantifying the origin and the amount of nuclear activation and the buildup of radioactivity.