ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Fausto Franceschini, Bojan Petrovic
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 431-437
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9221
Articles are hosted by Taylor and Francis Online.
International Reactor Innovative and Secure (IRIS) is an advanced pressurized water reactor with an integral primary system. It features an integral reactor vessel surrounded by a spherical steel containment 25 m in diameter. Both deterministic and Monte Carlo methods are used to characterize its radiation environment. This paper focuses on the generation of the neutron fission source that is employed as the fixed source in radiation transport calculations. To facilitate radiation shielding analysis, a technique is proposed to synthesize fission source data from the IRIS depletion history into an average and a limiting (maximum) source distribution. The average source preserves the time-integrated, spatially dependent fission neutrons and is suitable for evaluation of long-term irradiation effects, such as the radiation damage on the reactor vessel. The maximum source gives a bounding fission neutron distribution that is suitable for calculation of the maximum instantaneous dose to the personnel. Spatial and spectral effects are also taken into consideration in the source representation. Pinwise axial distributions of the neutron fission source and the associated contribution from primary fissionable isotopes have been generated to allow evaluation of neutron leakage in the critical regions, such as at the core periphery. Less detailed assemblywise axial distributions are also made available to simplify their implementation in the MCNP and TORT models. A comparison of the results obtained with the latter distributions against the reference results (employing the most detailed distribution) will show the impact of simplifications and help identify strategic features and locations where preserving the detailed information is beneficial for meeting specific shielding objectives.The judicious postprocessing and interpretation of the fission source distribution proposed by this approach make the subsequent radiation analysis practical while retaining the critical details needed to achieve high accuracy.