ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Reflections on NOW
Hash Hasemianpresident@ans.org
Last month, I talked about my goal of strengthening ANS’s voice, in part by attending three conferences. I have now checked the first event off that list: the Nuclear Opportunities Workshop.
This year, NOW took another step in outgrowing its “workshop” moniker and transitioning to a full-fledged regional conference and expo. What started only a few years ago as a small gathering in Oak Ridge, Tenn., with roughly 50 attendees has skyrocketed to an event with 1,100 people in attendance in Knoxville.
NOW’s popularity reflected how busy the roughly 350 nuclear companies in Tennessee have been in recent years. There is significant work going on surrounding Gen IV reactor development and deployment, advancements in new nuclear fuels, and defense-related builds like the Uranium Processing Facility.
Fausto Franceschini, Bojan Petrovic
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 431-437
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9221
Articles are hosted by Taylor and Francis Online.
International Reactor Innovative and Secure (IRIS) is an advanced pressurized water reactor with an integral primary system. It features an integral reactor vessel surrounded by a spherical steel containment 25 m in diameter. Both deterministic and Monte Carlo methods are used to characterize its radiation environment. This paper focuses on the generation of the neutron fission source that is employed as the fixed source in radiation transport calculations. To facilitate radiation shielding analysis, a technique is proposed to synthesize fission source data from the IRIS depletion history into an average and a limiting (maximum) source distribution. The average source preserves the time-integrated, spatially dependent fission neutrons and is suitable for evaluation of long-term irradiation effects, such as the radiation damage on the reactor vessel. The maximum source gives a bounding fission neutron distribution that is suitable for calculation of the maximum instantaneous dose to the personnel. Spatial and spectral effects are also taken into consideration in the source representation. Pinwise axial distributions of the neutron fission source and the associated contribution from primary fissionable isotopes have been generated to allow evaluation of neutron leakage in the critical regions, such as at the core periphery. Less detailed assemblywise axial distributions are also made available to simplify their implementation in the MCNP and TORT models. A comparison of the results obtained with the latter distributions against the reference results (employing the most detailed distribution) will show the impact of simplifications and help identify strategic features and locations where preserving the detailed information is beneficial for meeting specific shielding objectives.The judicious postprocessing and interpretation of the fission source distribution proposed by this approach make the subsequent radiation analysis practical while retaining the critical details needed to achieve high accuracy.