ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Junli Li, Shenjin Ming, Yanfeng Cao, Yanli Deng
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 391-398
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9215
Articles are hosted by Taylor and Francis Online.
The X-ray container/vehicle inspection system is a large and complex radiation application facility. To evaluate and optimize the shielding design for the system, a Monte Carlo method including two-step simulation, biasing sampling, and a scattering flag technique has been used to perform the shielding analysis - instead of the traditional empirical formula calculation.When the Monte Carlo method is applied to a complicated large system, some special techniques shall be used to obtain high accuracy and high efficiency in calculation. A special Monte Carlo method based on Geant4, including two-step simulation, biasing sampling, and scattering flag techniques, has been developed in this paper. For the two-step simulation, the first step is to simulate the electron transport inside the tungsten target of a linac and generate X-ray photons; the second step is to simulate the X-ray photon transport in the inspection system. For the biasing sampling, only the photons inside the X-ray beam are simulated and tracked. This allows more photons to reach the inspection system boundary. For the scattering flag, the trace of every photon reaching the inspection system boundary is recorded and stored, thus providing the possibility to tag the main dose contributors to the system boundary and allowing optimization of the shielding design.The simulation results on the inspection system boundary agree well with the measured results, and the key radiation contributors to the radiation dose on the system boundary are found with the scattering flag technique.A special Monte Carlo method combined with two-step simulation, biasing sampling and scattering flag techniques, has been developed and successfully used in the shielding design and optimization in an X-ray container/vehicle inspection system.