ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
J-Ch. Sublet, D. E. Cullen, R. E. MacFarlane
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 293-297
Neutron Measurements | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9197
Articles are hosted by Taylor and Francis Online.
The results produced by a variety of currently available pointwise Monte Carlo neutron transport codes for the relatively simple problem of modeling a fast source of neutrons slowing down and thermalizing in water are compared. Initial comparisons showed rather large differences in the calculated flux: up to 80% differences. By working together to improve the results, iterations were done by (a) ensuring that all codes were using the same data, (b) improving the models used by the codes, and (c) correcting errors in the codes - no code is perfect. Even after a number of iterations, we still found differences, demonstrating that our Monte Carlo and supporting codes are far from perfect. In particular, we found that the often overlooked nuclear data-processing codes can be the weakest link in our systems of codes. The results presented here represent today's state of the art in the sense that all of the Monte Carlo codes are modern, widely available, and used codes. They all can use the most up-to-date nuclear data, and the results are recent; these are the results that current users of these codes should expect to obtain from them. As such, the accuracy and limitations of the codes presented here should serve as guidelines to code users in interpreting their results for similar problems. Results for the improved thermal scattering model now available, using advanced versions of NJOY-99.259, TRIPOLI-4.5, and MCNPX-2.6.f Beta, are presented. For comparisons among experimentally measured water cross sections and the unique JEFF-3.1 and ENDF/B-VII thermal scattering law, S(,) data are exemplified.