ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
J-Ch. Sublet, D. E. Cullen, R. E. MacFarlane
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 293-297
Neutron Measurements | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9197
Articles are hosted by Taylor and Francis Online.
The results produced by a variety of currently available pointwise Monte Carlo neutron transport codes for the relatively simple problem of modeling a fast source of neutrons slowing down and thermalizing in water are compared. Initial comparisons showed rather large differences in the calculated flux: up to 80% differences. By working together to improve the results, iterations were done by (a) ensuring that all codes were using the same data, (b) improving the models used by the codes, and (c) correcting errors in the codes - no code is perfect. Even after a number of iterations, we still found differences, demonstrating that our Monte Carlo and supporting codes are far from perfect. In particular, we found that the often overlooked nuclear data-processing codes can be the weakest link in our systems of codes. The results presented here represent today's state of the art in the sense that all of the Monte Carlo codes are modern, widely available, and used codes. They all can use the most up-to-date nuclear data, and the results are recent; these are the results that current users of these codes should expect to obtain from them. As such, the accuracy and limitations of the codes presented here should serve as guidelines to code users in interpreting their results for similar problems. Results for the improved thermal scattering model now available, using advanced versions of NJOY-99.259, TRIPOLI-4.5, and MCNPX-2.6.f Beta, are presented. For comparisons among experimentally measured water cross sections and the unique JEFF-3.1 and ENDF/B-VII thermal scattering law, S(,) data are exemplified.