ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
A. Uchibori, H. Ohshima
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 83-94
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT09-A8853
Articles are hosted by Taylor and Francis Online.
A numerical analysis method for melting/solidification phenomena has been developed to evaluate feasibility of the several candidate techniques in the nuclear fuel cycle. Our method is based on the extended finite element method, which has been used for moving boundary problems. The basic idea of the extended finite element method is to incorporate the signed distance function into the standard finite element interpolation to represent a discontinuous gradient of the temperature at a moving solid-liquid interface. This technique makes it possible to simulate movement of the solid-liquid interface without the use of a moving mesh. Construction of the finite element equation from the energy equation in the case of melting/solidification problems has been discussed and is reported here. The technique of quadrature and the method to solve the governing equations for the problem involving liquid flows have also been constructed in the present work. The numerical solutions of the basic problems - a one-dimensional Stefan problem, solidification in a two-dimensional square corner, and melting of pure gallium - were compared to the exact solutions or to the experimental data. Through these verifications, validity of the newly developed numerical analysis method has been demonstrated.