ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
George H. Miley, Hiromu Momota, Linchun Wu
Nuclear Technology | Volume 166 | Number 3 | June 2009 | Pages 295-300
Technical Note | 2007 Space Nuclear Conference / Miscellaneous | doi.org/10.13182/NT09-A8843
Articles are hosted by Taylor and Francis Online.
A radical new inertial electrostatic confinement (IEC) fusion concept, the magnetically channeled IEC trap array (MCTA), is studied as a candidate power unit for interplanetary space travel. IEC fusion concepts are widely recognized to be attractive for space power because they are simple and lightweight. However, existing experimental IEC concepts, while very successful for low-level power neutron sources, do not project to high-power space applications because of poor confinement-time scaling and grid heating/losses. The MCTA concept addresses both issues: eliminating the need for a central grid by injecting energetic ions into this unique hybrid configuration and providing improved confinement by connecting a number of traps. Because of the linearly connected geometry and compatibility with an efficient traveling wave direct-energy converter, aneutronic fuels, such as D-3He, can be implemented. Thus, the MCTA concept has the potential to accomplish the demanding requirements of future deep-space propulsion and power by providing a high power-density propulsion system. This promise was amply demonstrated in an earlier, reasonably detailed design study by University of Illinois researchers that used an MCTA to accomplish a fast manned mission to Jupiter.In the present paper, we discuss the basic MCTA concept and examine stability issues that must be resolved to access the feasibility of this concept. Some important supporting data carry over from prior IEC experiments, but a full MCTA configuration has yet to be studied experimentally. If proven feasible, the MCTA development path would involve experiments at progressively higher powers aimed at the ultimate demonstration of a full-scale, several-hundred-MW propulsion unit.