ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
George H. Miley, Hiromu Momota, Linchun Wu
Nuclear Technology | Volume 166 | Number 3 | June 2009 | Pages 295-300
Technical Note | 2007 Space Nuclear Conference / Miscellaneous | doi.org/10.13182/NT09-A8843
Articles are hosted by Taylor and Francis Online.
A radical new inertial electrostatic confinement (IEC) fusion concept, the magnetically channeled IEC trap array (MCTA), is studied as a candidate power unit for interplanetary space travel. IEC fusion concepts are widely recognized to be attractive for space power because they are simple and lightweight. However, existing experimental IEC concepts, while very successful for low-level power neutron sources, do not project to high-power space applications because of poor confinement-time scaling and grid heating/losses. The MCTA concept addresses both issues: eliminating the need for a central grid by injecting energetic ions into this unique hybrid configuration and providing improved confinement by connecting a number of traps. Because of the linearly connected geometry and compatibility with an efficient traveling wave direct-energy converter, aneutronic fuels, such as D-3He, can be implemented. Thus, the MCTA concept has the potential to accomplish the demanding requirements of future deep-space propulsion and power by providing a high power-density propulsion system. This promise was amply demonstrated in an earlier, reasonably detailed design study by University of Illinois researchers that used an MCTA to accomplish a fast manned mission to Jupiter.In the present paper, we discuss the basic MCTA concept and examine stability issues that must be resolved to access the feasibility of this concept. Some important supporting data carry over from prior IEC experiments, but a full MCTA configuration has yet to be studied experimentally. If proven feasible, the MCTA development path would involve experiments at progressively higher powers aimed at the ultimate demonstration of a full-scale, several-hundred-MW propulsion unit.