ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Shumiao Zhao, Zhu Fang, Zhikai You, Xinxin Wu, Libin Sun, Yiyang Zhang
Nuclear Technology | Volume 212 | Number 1 | January 2026 | Pages 237-252
Regular Research Article | doi.org/10.1080/00295450.2025.2464420
Articles are hosted by Taylor and Francis Online.
The resuspension of deposited graphite particles in high-temperature gas-cooled reactors (HTGRs) under specific accident conditions has attracted considerable attention due to its critical connection with source terms. However, nearly all related studies have overlooked the effects of long-term high-temperature sintering after particle deposition, which could have a significant impact by changing the strength of particle-particle and particle-wall connections and lead to an overestimation of graphite dust resuspension in accident scenarios.
In this work, we conduct an experimental study to quantitatively evaluate the effect of sintering on the resuspension behavior of graphite particles, combined with the rock’n’roll model for theoretical analysis. Meanwhile, the resuspension process is recorded with a high-speed camera. The results showed that sintered particles exhibit a higher friction velocity threshold for resuspension compared to their unsintered counterparts, with the effect amplified by increased sintering temperature and duration, particularly for larger particles. The friction velocity significantly increases (up to ~80%) after 9 h of sintering. The new resuspension curve can still be fitted to the rock’n’roll model by adjusting the effective surface energy, which shows an Arrhenius-type dependence on the sintering temperature. This preliminary study suggests that incorporating the sintering effect could significantly lower the estimated aerosol source term for HTGRs.