ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Geoffrey Beausoleil, Sobhan Patnaik, Luca Capriotti, Randall Fielding, Bryon Curnutt, Nate Oldham, Andrew Bascom, Alexander Swearingen, Jacob Hirschhorn, Cynthia Adkins, Robert Mariani
Nuclear Technology | Volume 212 | Number 1 | January 2026 | Pages 66-82
Research Article | doi.org/10.1080/00295450.2025.2536893
Articles are hosted by Taylor and Francis Online.
Many next-generation light water reactor (LWR) concepts, such as mobile small modular reactors, are seeking to use smaller core dimensions than conventional reactor types. Smaller reactor cores require an increase in fissile material to maintain reactivity. For nonproliferation purposes, enrichment increases are limited to less than 20% high-assay low-enriched uranium (HALEU), and so, fuels with higher uranium density than UO2 must be considered. To this end, uranium-molybdenum (U-Mo) alloys were tested using the Fission Accelerated Steady-state Test (FAST) approach. The experiment test matrix is focused on identifying the temperature transition from low swelling and high fission gas retention to breakaway swelling and low fission gas retention. This paper documents the results of irradiation tests and postirradiation examinations including neutron radiography, rodlet profilometry, fission gas collection analysis, and optical metallography. The results of these tests showed that unconstrained U-Mo fuels (solid, Na-bonded rodlets) have a swelling threshold temperature between 400°C to 450°C with minimal fission gas release (FGR) below this point. Higher-temperature solid fuel showed microstructural zoning with small pore networks while lower-temperature solid fuels have a uniform microstructure with large pore networks. Annular U-Mo fuels, where swelling had some self-constraint imposed upon it, were shown to have much reduced swelling compared to their solid counterparts due to the compressive strains imposed during swelling, which correlated with the very low FGR for irradiation temperatures up to 500°C. These initial results show that the use of U-Mo in constrained fuel geometries could be used as a high uranium density HALEU fuel for LWRs.