ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Geoffrey S. Gray, P. Madhan Kumar, Scott J. Ormiston
Nuclear Technology | Volume 211 | Number 10 | October 2025 | Pages 2372-2385
Research Article | doi.org/10.1080/00295450.2024.2365486
Articles are hosted by Taylor and Francis Online.
Aerosol transport and deposition are important processes in modeling of accident scenarios for a small modular reactor. An aerosol drift-flux model is attractive because it is computationally less expensive than Lagrangian particle tracking. It must be determined, however, how well it performs when implemented in a commercial computational fluid dynamics (CFD) code. This work presents results of modeling aerosol transport and deposition using a full Eulerian three-dimensional drift-flux model implemented in the commercial CFD code STAR-CCM+. The forces due to gravity and thermophoresis are included in the present drift-flux model along with Brownian motion and turbulent diffusion. The forces are added as a source term to a passive scalar transport equation. In addition, a drift velocity representing the forces is used in a built-in electrochemical species transport equation. The results of these two approaches are compared. An appropriate deposition velocity is used to calculate the aerosol concentration deposited on surfaces. The semiempirical relation proposed by Lai and Nazaroff (2000) is used to compute the deposition velocity due to gravitational settling, and the present results are compared with the experimental and numerical data obtained from the work of Chen et al. (2006). It was found that the concentration profile obtained from the present drift-flux model showed reasonable agreement with the literature data. A thermophoresis model showed good agreement when compared with the analytical solution of Nazaroff and Cass (1987). In addition to the particle concentration results, this work presents details of the drift-flux model implementation and the bulk flows. These extra details will enable comparisons by others developing similar models.